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Abstract 

D4.2 describes the final design and evaluation of the 5G millimeter wave radio interface 
concept including waveform, channel codes, frame structure and numerology, initial access, 
multiple access, as well as spectrum sharing schemes. The proposed technology solutions 
are integrated into an overall radio interface proposal. Furthermore, the link level-, system 
level- and HIL evaluation results of the radio interface are reported. 
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Executive summary 

This deliverable presents the final Radio Interface (RI) concepts for mm-wave mobile 
communications. The RI concepts consists of RI Components (RICo), which are blocks needed 
to create the RI. Under each RICo, a number of RI Component Solutions (CoS) are proposed, 
which are concrete techniques that can be applied. There are a number of RICoôs in mmMAGIC, 
including waveform, channel code, modulation, retransmission, numerology, frame structure, 
initial access, multiple access, and duplexing schemes. 
 
Within WP4 of mmMAGIC, the mm-wave (6-100 GHz) specific challenges for mm-wave radio 
interface design have been identified and studied, including challenges due to propagation 
channel, hardware impairments/constraints, bandwidth, power efficiency, deployment aspects 
and frequency band availability. Based on such challenges, a number of requirements/Key 
Performance Indicators (KPI) as well as the design principles have been derived for the RICoôs. 
According to such KPIôs and design principles, a number of CoSôs have been developed for the 
RICoôs. This deliverable presents the developed CoSôs under the overall final RI concept, which 
is the further development of the preliminary RI concept presented in D4.1. A brief summary of 
the RICoôs with their CoSôs is made as follows: 
 

1. RICo group 1: Waveform (1 RICo). After evaluation of a number of waveform 
candidates, OFDM waveform is recommended, with several enhancement techniques, 
including Peak-to-Average-Power-Ratio (PAPR) reduction, phase noise mitigation and 
windowing/pulse shaping for frequency localization. Further, advanced prefix such as 
Unique Word (UW) can be exploited to further enhance performance without adding 
training overhead. Moreover, a new waveform BF-OFDM has been proposed for future 
study;  

2. RICo group 2: Channel code, Modulation and Retransmission (3 RICoôs) schemes. 
Advanced decoders have been developed for Low Density Parity Check (LDPC) and 
Polar codes. Such decoders allow very high throughput and can tolerate hardware 
imprecision, i.e. to reduce hardware complexity. Probabilistically Shaped Coded 
Modulation (PSCM) has been proposed as potential enhancement of current modulation 
schemes. Advanced Hybrid Automatic Repeat Request (HARQ) architectures and 
schemes have been proposed for latency reduction and to support Integrated Access 
and Backhaul (IAB);  

3. RICo group 3: Frame structure and Numerology (2 RICoôs). A scalable numerology 
has been proposed which can be used for different carrier frequencies and bandwidths. 
Five subframe structures have been defined, with extensions to support IAB operations. 
Some subframes allow fully dynamic Time Division Duplex (TDD) for better match of 
DL/UL traffics and to reduce latency. An extension of the subframe structure was 
proposed to take into account processing latency. Demodulation Reference Signal 
(DMRS) and Phase Tracking Reference Signal (PTRS) designs have been developed. 
Frame structure for common control and mixed numerologies have been proposed;  

4. RICo group 4: Initial access, Multiple access, Duplexing schemes and Spectrum 
Sharing (4 RICoôs). An overall concept for initial access and multiple access has also 
been proposed, covering cell discovery, random access, beam search/tracking, flexible 
multiplexing and resource allocation. Under this concept, a number of CoSôs have been 
developed, including efficient beam sweeping schemes, coordinated random access 
scheme with suitable preamble design, advanced beam searching/tracking schemes, 
Quality of Service (QoS)-centric resource allocation and flexible multiplexing of backhaul 
and access traffics by exploiting the spatial domain. Spectrum sharing concept has also 
been proposed, including spectrum pooling architectures, functions and beam 
coordination techniques;  

 



 

Document: H2020-ICT-671650-mmMAGIC/D4.2 

Date: 06/30/2017 Security: Public 

Status: Final Version: 1 

 

mmMAGIC Public vi 
 

The proposed RI concept has been evaluated both on link level and system level, where a 
number of CoSôs have been implemented and the gains are shown. Finally, a subset of CoSôs 
have been selected for Hardware-In-the-Loop (HIL) trials and demonstrations. 
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1 Introduction  

The mm-wave frequency bands (defined as frequency resources in 6-100 GHz) have much 
more available bandwidth than the legacy bands in the sub-6 GHz range used today. They can 
therefore support the much higher data rates that are required by the use cases defined in the 
project deliverable D1.1 [MMM15-D11]. To exploit the mm-wave frequency resources, the radio 
interface (RI, including PHY and MAC layer) needs to be properly designed. The specific 
characteristics of the underlying propagation channels (obtained by channel measurement and 
modelling activities of mmMAGIC, reported in [MMM17-D22]) and the specific challenges of 
using such frequencies for access and backhaul have to be taken into account. 
 
When designing the radio interface for mm-wave frequencies, one will face a number of 
challenges. The path loss increases with square of frequency (assuming that the antenna 
aperture decreases with decreasing wavelength). Additionally, the propagation characteristics 
of the wireless channel are more sensitive to surrounding objects and atmospheric conditions. 
As a result, varying path loss can be present, especially when Line-of-Sight (LOS) links are not 
available. Recent channel measurement results show that in some typical scenarios, the 
propagation channel of mm-wave frequency have a limited number of multipath components. 
This is quite different from the case at frequencies below 6 GHz, where the channels usually 
have rich multipath components. Furthermore, the RF impairments, such as phase noise, 
sampling jitter, I/Q-imbalance and the Doppler Effect also aggravate as carrier frequency 
increases. The efficiency of power amplifiers (PA) also degrades with increasing carrier 
frequency, causing challenges for the power and link budgets of transceivers. A further 
challenge of mm-wave communication is the vulnerability to blocking/shadowing and the 
resulting intermittent link quality when the transceivers have mobility. 
 
With the increasing path loss, the antenna gain should be increased to meet requirements on 
power consumption and link budget. Effectively, the antenna patterns should be made more 
directional. Highly directional transmission will lead to new and different design principles of the 
radio interface compared to current mobile communication systems. There is a current trend of 
mm-wave transceiver design (at least for above 20 GHz) to utilize both analogue and digital 
signal processing so that high beamforming gain is achieved while the constraints on power 
consumption and hardware complexity is met. One example is the hybrid analogue and digital 
beamforming architecture that is being investigated in this project [MMM17-D52]. Such new 
transceiver architectures should be taken into account when designing the radio interface. 
 
In addition, the radio interface design should also consider different deployment aspects, 
including indoor and outdoor, standalone and non-standalone, as well as access, backhaul and 
cooperative communications. 
 
One of the main goals of mmMAGIC is to develop a radio interface concept that takes into 
account the above challenges and fulfils the KPIs defined in this project [MMM15-D11], including 
user data rate, connection density, traffic density, mobility, reliability, availability and latency. 
Such a radio interface concept and the corresponding solutions are described in this deliverable. 
The proposed radio interface exploits the corresponding characteristics of the propagation 
channel, communication links and transceiver architecture etc. It can provide high re-
configurability, adaptability, spectral, energy- and cost-efficiency, as well as robustness against 
hardware impairments. 
 
The radio interface concept in mmMAGIC mainly comprise of a number of ñRadio Interface 
Components (RICo)ò. They are categorized to the following 4 RICo groups: 
 

1. RICo group 1: Waveform (1 RICo). Design waveforms for mm-wave access and 
backhaul taking into account the specific challenges and characteristics of mm-wave 
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communication. This includes investigation of new waveforms and current 4G/WLAN 
waveforms, selection of waveform candidates, further design and optimization of the 
waveforms;  

2. RICo group 2: Channel code, Modulation and Retransmission (3 RICoôs) schemes. 
Develop channel coding/decoding schemes and retransmission schemes that support 
high throughput and low latency, taking into account the intermittent link quality and 
robustness to computational impreciseness;  

3. RICo group 3: Frame structure and numerology (2 RICoôs). Design frame structure and 
numerology to optimize the transmission in different mm-wave frequency bands and 
support efficient synchronization, initial access, channel estimation, beamforming and 
beam-tracking;  

4. RICo group 4: Initial access, multiple access, duplexing schemes and spectrum sharing 
(4 RICoôs). Develop efficient initial access scheme(s), as well as synchronization and 
channel estimation scheme(s), to support efficient and robust access with low latency, 
robust transmission and under mobility; Analysis and design of multiple access and 
duplexing schemes taking into account the extensive use of antenna arrays. This 
includes the development of dynamic spectrum usage scheme(s) exploiting the 
propagation characteristics to allow efficient usage of mm-wave frequency bands;  

 
Under each RICo, a number of radio interface Component solution (CoS) are developed and 
evaluated. Some selected promising CoSôs are even evaluated in HIL based trials (T4.4).  
 
Recently, 3GPP has also started study items on 5G air-interface definition, which includes 
basically most of the above subtopics. The radio interface design work of mmMAGIC has a 
certain degree of harmonization of the 3GPP proposals, e.g. a subset of the waveforms and 
numerologies are also proposed in 3GPP by the corresponding mmMAGIC partners. 
Furthermore, in some of our evaluations, similar parameters (e.g. numerology) as some 3GPP 
proposals have been used. 
 
The rest of this deliverable is organized as follows: Chapter 2 evaluates the down selected 
waveform candidates and provide enhancement schemes and evaluation results. A new 
waveform is also presented for future study; Chapter 3 describes possible solutions for 
modulation, coding and HARQ; Chapter 4 provides the numerology and frame structure 
designs; Chapter 5 describes concepts and solutions for initial access, multiple access and 
duplexing aspects; Chapter 6 presents the overall radio interface proposal, based on the radio 
interface components described in previous chapters, elaborate its relation to 3GPP and provide 
link- and system level evaluation results, as well as Hardware-In-the-Loop (HIL) trial and 
demonstration results. Chapter 6 also concludes this deliverable by concluding the radio 
interface proposal. 
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2 Waveforms 

2.1 Overview  

As discussed in Section 1, mobile radio communication above 6 GHz is characterized by large 
channel bandwidths, extreme data rate requirements, harsh propagation conditions, severe RF 
impairments, massive number of antennas, small sized low cost base stations, and mainly Time 
Division Duplex (TDD) deployments. In the following, we define a number of performance 
indicators that are important for the assessment of waveforms 
 

¶ High Spectral efficiency, is vital to support extreme requirements on data rate, connection 
and traffic densities. Spectral efficiency is more important at lower carrier frequencies than 
at very high frequencies, where large channel bandwidths are likely to be available for 
mobile communication. 

 

¶ MIMO compatibility, to enable straightforward usage of MIMO techniques which is the 
driving technology for mm-wave communication; 

 

¶ Low Peak-to-Average-Power-Ratio (PAPR), to compensate for power amplifierôs (PAôs) 
inefficiency at high frequencies; 

 

¶ Robustness to channel time-selectivity and frequency selectivity: Depending on scenario, 
LOS/NLOS, beamforming algorithm and user mobility, the channel can have different 
combinations of high/low frequency selectivity and high/low time selectivity 

 

¶ Robustness to hardware impairments, especially phase noise and power amplifier 
nonlinearities. Phase noise increases as a function of carrier frequency and the impact of 
nonlinear PA increases as a function of signal bandwidth; 

 

¶ Transceiver baseband complexity, involved in encoding and decoding of information 
embedded in a waveform. Complexity is important to allow the usage of hardware chips with 
acceptable cost; 

 

¶ Time localization, to enable efficient TDD duplexing and support low latency applications; 
 

¶ Flexibility and scalability, to enable diverse use cases and deployments scenarios; 
 

¶ Out-of-band emissions/Frequency localization, to support potential co-existence of different 
services by multiplexing different waveform numerologies in frequency domain. Frequency 
localization may not be a major performance indicator at high frequencies where large 
channel bandwidths are available.  

 
Figure 2-1 shows the importance of the above listed waveform key performance indicators as a 
function of carrier frequency. 
 
In D4.1 [MMM16-D41], several multi-carrier and single-carrier waveforms have been assessed 
according to the above mentioned KPIs. The evaluations were performed in common waveform 
simulators of mmMAGIC under common assumptions on carrier frequencies, waveform 
parameters, channel and impairment models. The results reveal that OFDM is suitable for above 
6 GHz communication. For above 30 GHz communication, we concluded that OFDM with PAPR 
reduction and DFT-s-OFDM are both promising options. Later, 3GPP also agreed to adopt CP-
OFDM for both uplink and downlink transmissions for eMBB and ultra-reliable low latency 
communication (URLLC) services for up to 52.6 GHz. For coverage limited scenarios, DFT-s-
OFDM is also an option for uplink transmission, however, it would support only single stream 
transmission, as agreed in 3GPP [3GPPR1167963]. In the view of D4.1 conclusions and the 



\  

Document: H2020-ICT-671650-mmMAGIC/D4.2  

Date: 06/30/2016 Security: Public 

Status: Final Version: 1 

 

mmMAGIC Public 4 
 

status of NR standardization in 3GPP, this deliverable discusses design consideration of OFDM 
and makes a comparison of OFDM and DFT-s-OFDM. For OFDM, we discuss design aspects 
related to phase noise compensation, PAPR reduction, spectral confinement, advanced prefix 
design and performance with LDPC codes. Two further waveforms, Block Filtered OFDM (BF-
OFDM, presented as a new waveform) and FBMC are also discussed.  
 

 
Figure 2-1: Importance of the waveform key performance indicators as a function of carrier 

frequency. 

2.2  OFDM Design Considerations  

 
D4.1 [MMM16-D41] concluded that OFDM is attractive for above 6 GHz communication, 
considering its high spectral efficiency, easy integration with MIMO, low complexity, time 
localization, and robustness to channel frequency selectivity. Some drawbacks of OFDM 
include less frequency localization, high PAPR (like all multi-carrier waveforms) and sensitivity 
to phase noise (like all multi-carrier forms). To address these issues, we discuss various design 
options for OFDM. 
 

2.2.1 Phase Noise Considerations 

Phase noise in an OFDM system causes two main effects: i) Common Phase Error (CPE), ii) 
Inter Carrier Interference (ICI). CPE refers to phase rotation of all sub-carriers by an equal 
amount and can be corrected easily with the use of pilot subcarriers. ICI is an additive noise 
(not always Gaussian) and usually hard to compensate for depending on how fast the phase 
variations are. The effect of CPE increases and the effect of ICI decreases, as subcarrier 
spacing increases. According to Annex A.5 and [MMM16-D41], the impact of phase noise on 
achievable Signal-to-Interference Ratio (SIR) as a function of sub-carrier spacing (assuming 
perfect CPE compensation) is given in Figure 2-2, under mmMAGIC phase noise model 
[MMM16-D51].   
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Figure 2-2: Achievable SIR due to ICI as a function of subcarrier spacing at different carriers 
frequencies, according to mmMAGIC phase noise model. 

 

For the given model, subcarrier spacing ɝÆ φπ kHz can achieve 35 dB SNR at 28 GHz and 
subcarrier spacing ɝÆ τψπ kHz can achieve ~30 dB SNR at 82 GHz. This means that a proper 
choice of sub-carrier spacing in CP-OFDM (with reasonable CP) can achieve sufficiently good 
SNR with merely CPE compensation. However, if the phase noise is high, then one may need 
to mitigate ICI. In the following, we investigate three alternatives: 
 

¶ Proper selection of subcarrier spacing without PN compensation 

¶ CPE compensation with proper selection of subcarrier spacing 

¶ CPE and ICI compensation with proper selection of subcarrier spacing 
 
Considering Figure 2-2, we make following assumptions on OFDM numerology for evaluations 
and plot SER performance with and without CPE compensation for different carrier frequencies 
(6 GHz, 28 GHz, 82 GHz) and modulation orders (16 QAM, 64 QAM) in Figure 2-3.  
 

Table 2-1: Evaluation Assumptions 

 
 
The results reveal that CPE compensation can be beneficial at high carrier frequencies (e.g., 
above 30 GHz) and high modulation orders (e.g., 64 QAM).  
 
Next, we investigate the benefit of mitigating ICI as well as CPE under extreme conditions (very 
high carrier frequency, high modulation order, and high phase noise model due to inexpensive 
oscillator). The ñhighò phase noise mode of mmMAGIC PN model is illustrated in Figure 2-4.  
 
For performance evaluation, we employ phase noise mitigation scheme developed in 
mmMAGIC [MMM16-D41]. This scheme is non-recursive with moderate complexity and 
compensates for phase noise in time domain (before FFT at the receiver) based on reference 
signals (pilots). The idea is to estimate phase noise samples for each OFM symbol at few anchor 
points (samples) and estimate the remaining points (samples) via interpolation. The scheme 
requires that the number of pilots in an OFDM symbol is greater than the number of anchor 
points. For simulations, we assume a DFT size of Nf = 512, including Np = 32 number of 
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scattered pilots within an OFDM symbol. The remaining active subcarriers are loaded with 16- 
or 64-QAM. CP length is set to be larger than the channel length. Sampling frequency is set so 

that the subcarrier spacing ɝÆ = 240 or 480 kHz. Carrier frequency is set to fc = 82 GHz. The 
QuaDRiGa channel model [JRB+14] is used for channel emulation. Both CPE correction 
[WBN04] and the phase noise mitigation scheme with q = 7 unknowns are used for phase noise 
compensation [CW16]. 

 
(a)                                                                     (b) 

 
                                   (c)                                                                      (d)   

      Figure 2-3: SER comparison for OFDM with and without CPE compensation, for different 
carrier frequencies and modulation orders: (a) 64QAM @ 6 GHz carrier; (b) 64QAM @ 28 GHz 
carrier; (c) 64QAM @ 82 GHz carrier; and (d) 16QAM @  82 GHz carrier. 
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Figure 2-4: Power spectral density of the phase noise in ñhighò and ñlowò modes. 

 
Figure 2-5: SER performances of without phase noise (PN) correction, with common phase error 
(CPE) correction, with PN mitigations and without PN in multipath fading channel. (a) ñlowò PN 
mode; 64-QAM; 240-kHz subcarrier spacing; (b) ñhighò PN mode; 64-QAM; 240-kHz subcarrier 
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spacing (c) ñhighò PN mode; 64-QAM; 480-kHz subcarrier spacing; (d) ñhighò PN mode; 16-QAM; 
480-kHz subcarrier spacing 

 
As can be seen in Figure 2-5, for the ñlowò mode, the ICI is less influential and that simple CPE 
correction is as effective as the phase noise mitigation scheme. For the ñhighò mode, it can be 
seen that the phase noise mitigation scheme clearly outperforms the CPE correction (at the 
expense of increased complexity); and as the corresponding BER performance improves as the 
subcarrier spacing increases from 240 to 480 kHz and as the modulation order decreases from 
64-QAM to 16-QAM.  

 
In order to enable CPE and/or ICI compensation, one needs to employ reference signals. 3GPP 
has already agreed to include phase tracking reference signals (PTRS). The phase noise 
reference signals need to be dense across time axis to track phase variations. If the goal is to 
only compensate CPE, then the density across frequency axis (i.e., across subcarriers) can 
remain low since all subcarriers suffer from same phase variations.  However, denser pilots are 
required in frequency domain for ICI mitigation [CW16]. Further discussion on PTRS is given in 
Section 4.3.4.  
 
Another approach is to replace the cyclic prefix in OFDM by a known sequence, called Unique 
Word (UW). The UW is known to the receiver and can be used for phase noise mitigation. By 
computing a ñCPEò on the UW, we effectively sample the phase noise process on a denser grid, 
getting a better approximation of the phase noise realization. The performance of CPE 
compensation scheme via UW is discussed in Annex A.2. It is shown that performance can be 
improved at the cost of a slight increase in computational complexity (for the computation of the 
ñCPEò on the UW), but without additional training signal overhead.  

 

2.2.2 PAPR Reduction  

It is well known that OFDM suffers from high PAPR. In this section, we evaluate performance 
of simple PAPR reduction schemes and make a comparison with DFT-s-OFDM. The considered 
PAPR reduction algorithms do not require any receiver side processing.  
 
Amplitude Clipping: A threshold value of the amplitude is fixed in this case to limit the peak 
envelope of the input signal [TPZ05]. The clipped OFDM signal is represented as: 

ὼ ὸ
ὼὸȟ                ÉÆ ȿὼὸȿ ὃ

ὃ Ὡ ȟ   ÉÆ ȿὼὸȿ ὃ
 

where ὃ  is the threshold of the amplitude, and •ὸ is the phase of the transmitted signal 
ὼὸ. The clipping severity is measured by the clipping ratio ‗, defined as: 

‗
ὃ

ὖ
 

where ὖ is the average power of the transmitted signal. 
 
Exponential Companding: Exponential companding is a nonlinear companding technique 
[JYS05]. The companded OFDM signal is represented as: 

ὼ ὸ ÓÉÇÎὼὸ Ͻ ρ ÅØÐ
ὼὸ

ῴὼὸ
 

where Ὠ is the degree of a specific exponential companding scheme, and  is calculated as 
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Constrained Clipping: The constrained clipping algorithm is meant to work in OFDM systems 
which require both in-band and out-of-band distortions to be kept below certain threshold 
[TPZ05]. The out-of-band distortion is measured with a given spectral mask ὖ  for the power 
spectral density (PSD), while in-band distortion is quantified with an error vector magnitude 
(EVM) threshold ὝὬ of which the transmitted signal should not exceed. For crest factor reduction 
(CFR) techniques with distortion, over-sampling is also necessary in order to examine the out-
of-band spectral characteristics of the signal after CFR. A typical over-sampling factor is ὒ τ. 
The block diagram of the constrained clipping scheme is shown in Figure 2-6. The detailed 
algorithms for in-band and out-of-band processing can be found in [RZT06]. 

 

 
Figure 2-6: Block diagram of the constrained clipping scheme. 

 

The main parameters used in the PAPR reduction study are summarized in Table 2-2, together 
with the mmMAGIC phase noise model and nonlinear PA model (i.e., Table 2-3). To reduce 
nonlinear distortion in the transmitted OFDM signal, PAPR reduction and/or input power backoff 
is required. Different power backoff settings (e.g., from 0 dB to 10 dB) are applied to reduce 
nonlinear distortion introduced by PA. 
 

Table 2-2: Summary of main simulaiton parameters 

Parameters  Settings  

Carrier frequency 6 GHz 

Sampleing frequency 122.88 MHz 

FFT size 2048 

Number of active subcarriers 1200 

Subcarrier spacing 60 kHz 

Number of symbols per 
subframe 

7 (1 preamble + 6 data symbols) 

Modulation and coding scheme 16QAM with LDPC coding 

Channel model Quadriga 

CP length 7% 

RF carier power 0.01 W 

Phase noise mmMAGIC model (low) 

PA nonlinearity Polynomial model 

 

Table 2-3: Non-linear PA parameter settings 

Parameters  Settings  

Non-linear order P 5 

Output 1 dB gain compression power 0.01 W 

Output third order intercept power 0.1 W 

Saturation power 0.032 W 

Gain compression at saturation 3 dB 

Reference resistence 50 ohm 

 
 
The specific parameter settings for different PAPR reduction techniques are as follows. The 
exponential companding degree is set to be 1, and the clipping ratio is set to be 1.7 for the 
amplitude clipping scheme in order to have similar PAPR reduction for the two schemes. For 
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the constrained clipping scheme, the same clipping ratio is applied with additional EVM and 
spectral mask constraints specified in Table 2-4. 

 
Table 2-4: PAPR reduction parameter settings  

Amplitude Clipping 

Clipping ratio ‗ 1.7 

Exponential Companding 

Exponential companding degree Ὠ 1 

Constrained Clipping 

Clipping ratio ‗ 1.7 

EVM threshold ὝὬ 0.1 

Spectral mask ὖ  Armstrong algorithm 

 

Figure 2-7 shows the CCDF of PAPR for DFT-s-OFDM and OFDM with/without different PAPR 
reduction schemes. This figure clearly shows the effectiveness of various PAPR reduction 
schemes. For example, PAPR is reduced by 4 dB for both the clipping scheme and the 
exponential companding scheme (the parameter for clipping is intentionally set to have similar 
performance as compared to companding). For constrained clipping, additional in-band and out-
of-band processing are performed after clipping to satisfy the EVM and spectral mask 
requirements, thus the reduction of PAPR is slightly reduced as compared to the other two 
schemes. It is shown that OFDM with PAPR reduction can achieve similar PAPR as compared 
to DFT-s-OFDM. 

 
Figure 2-7: CCDF of PAPR for DFT-s-OFDM and OFDM signals with/without PAPR 

reduction schemes. 

 
Next the impact of PAPR reduction on the spectral containment is studied. Figure 2-8 shows 
the power spectral density (PSD) for DFT-s-OFDM and OFDM signals with/without different 
PAPR reduction schemes at different power backoff settings. Firstly, if we compare the PSD for 
OFDM signals with and without PAPR reduction, it is shown that the clipping scheme and the 
companding scheme would cause out-of-band spectrum regrowth, while the constrained 
clipping scheme has minor spectrum regrowth due to the additional out-of-band processing to 
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satisfy the spectral mask requirement. Secondly, when the power backoff is high, which is close 
to the case assuming ideal PA, there is clear advantage of lower out-of-band emissions in 
OFDM and DFT-s-OFDM as compared to OFDM with clipping and companding. When the 
power backoff is low, the difference of out-of-band emissions among different schemes 
becomes smaller. That is because with low power backoff (i.e., high transmission power), the 
high energy part of OFDM and DFT-s-OFDM signals get distorted in the nonlinear PA, resulting 
in spectral broadening. So generally, the distortion of OFDM and DFT-s-OFDM signals 
introduced by nonlinear PA and the distortion of OFDM signals introduced by PAPR reduction 
schemes result in similar out-of-band emissions at low power backoff. One may also employ 
linearization techniques, e.g., pre-distortion to compensate for PA non-linearity. However, such 
technique comes with major baseband/analog complexity and may not be effective for large 
bandwidth signals and/or hybrid beamforming architecture. It remains an open question that to 
what extent such technique can be effective for large bandwidth signals (e.g., in mm-wave band) 
and how much additional complexity is required. 
 
Figure 2-9 shows the EVM performance for DFT-s-OFDM and OFDM signals with/without 
different PAPR reduction schemes at different power backoff settings. With high power backoff, 
the signal is less distorted by the nonlinear PA, thus the EVM performance between DFT-s-
OFDM and OFDM is almost the same, while OFDM with PAPR reduction schemes show 
degraded EVM performance due to the distortion introduced by PAPR reduction schemes. 
Furthermore, it is shown that the degradation of EVM in OFDM with PAPR reduction is more 
pronounced at high SNR region than in the low SNR region where the additive channel noise is 
the dominant adverse factor. With low power backoff, nonlinear PA would introduce extra signal 
distortion and the severity of the distortion depends on the PAPR of the input signal. As DFT-s-
OFDM and OFDM with PAPR reduction have lower PAPR than OFDM, OFDM performs the 
worst among all schemes, while OFDM with PAPR reduction schemes achieve similar EVM 
performance as compared to DFT-s-OFDM at low power backoff (here we assume that the low 
power backoff is insufficient to provide the required "headroom" to accommodate the OFDM 
signal, but sufficient to accommodate the OFDM signal with PAPR reduction). 

 
Figure 2-8: Power spectral density (PSD) for DFT-s-OFDM and OFDM signals 
with/without PAPR reduction schemes with different power backoff settings. 

 
















































































































































































































































































































